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1 Find the set of values ofx satisfying the inequality

�x + 2a � > 3�x − a �,

wherea is a positive constant. [4]

2 Solve the equation

2 ln�5− e−2x� = 1,

giving your answer correct to 3 significant figures. [4]

3 Solve the equation

cos�x + 30Å� = 2 cosx,

giving all solutions in the interval−180Å < x < 180Å. [5]

4 The parametric equations of a curve are

x = t − tant, y = ln�cost�,

for −1
20 < t < 1

20.

(i) Show that
dy
dx

= cott. [5]

(ii) Hence find thex-coordinate of the point on the curve at which the gradient isequal to 2. Give
your answer correct to 3 significant figures. [2]

5 (i) The polynomial f�x� is of the form�x − 2�2g�x�, where g�x� is another polynomial. Show that
�x − 2� is a factor of f′�x�. [2]

(ii) The polynomialx5 + ax4 + 3x3 + bx2 + a, wherea andb are constants, has a factor�x − 2�2.
Using the factor theorem and the result of part(i), or otherwise, find the values ofa andb. [5]
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In the diagram,A is a point on the circumference of a circle with centreO and radiusr. A circular arc
with centreA meets the circumference atB andC. The angleOAB is equal tox radians. The shaded
region is bounded byAB, AC and the circular arc with centreA joining B andC. The perimeter of
the shaded region is equal to half the circumference of the circle.

(i) Show thatx = cos−1
0 0

4+ 4x

1
. [3]

(ii) Verify by calculation thatx lies between 1 and 1.5. [2]

(iii) Use the iterative formula

xn+1 = cos−1
@

0

4+ 4xn

A

to determine the value ofx correct to 2 decimal places. Give the result of each iteration to
4 decimal places. [3]

7 (a) It is given that−1+ �ï5�i is a root of the equationÏ3
+ 2Ï + a = 0, wherea is real. Showing your

working, find the value ofa, and write down the other complex root of this equation. [4]

(b) The complex numberw has modulus 1 and argument 21 radians. Show that
w − 1
w + 1

= i tan1. [4]
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The diagram shows the curvey = x cos1
2x for 0 ≤ x ≤ 0.

(i) Find
dy
dx

and show that 4
d2y

dx2 + y + 4 sin1
2x = 0. [5]

(ii) Find the exact value of the area of the region enclosed by thispart of the curve and thex-axis.
[5]
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9 The population of a country at timet years isN millions. At any time,N is assumed to increase at a

rate proportional to the product ofN and�1− 0.01N�. Whent = 0, N = 20 and
dN
dt

= 0.32.

(i) TreatingN andt as continuous variables, show that they satisfy the differential equation

dN
dt

= 0.02N�1− 0.01N�. �1�

(ii) Solve the differential equation, obtaining an expression for t in terms ofN. [8]

(iii) Find the time at which the population will be double its valueat t = 0. [1]

10 Referred to the originO, the pointsA, B andC have position vectors given by

−−→
OA = i + 2j + 3k,

−−→
OB = 2i + 4j + k and

−−→
OC = 3i + 5j − 3k.

(i) Find the exact value of the cosine of angleBAC. [4]

(ii) Hence find the exact value of the area of triangleABC. [3]

(iii) Find the equation of the plane which is parallel to they-axis and contains the line throughB
andC. Give your answer in the formax + by + cÏ = d. [5]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable
effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will
be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local
Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2014 9709/32/M/J/14


